MSDS REPORT

Sample Name: ACID BATTERY
Client Name: CHONGQING HANWEI BATTERY DEVELOP CENTER
SECTION 1 -- CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Manufacturer's Name: CHONGQING HANWEI BATTERY DEVELOP CENTER
Address: UNIT 11 NANPENG YUANYANG TOWN BANAN DISTRICT CHONGQING CHINA
Emergency Telephone No.: 023-65738185
Fax: 023-65153108
Hazard Rating: H313

SECTION 2 -- COMPOSITION/INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>Components</th>
<th>%Wt.</th>
<th>TLV</th>
<th>LD50 Oral</th>
<th>LC50 Contact</th>
<th>CAS NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (Pb, PbO2, PbSO4)</td>
<td>About 70%</td>
<td>0.050mg/m³</td>
<td>0.5,(500) mg/Kg</td>
<td>N/A</td>
<td>7439-92-1</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>About 20%</td>
<td>1 mg/m³</td>
<td>(2.14) mg/Kg</td>
<td>N/A</td>
<td>7664-93-9</td>
</tr>
<tr>
<td>Fiberglass Separator</td>
<td>About 5%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>65997-17-3</td>
</tr>
<tr>
<td>Container (ABS or PP)</td>
<td>About 5%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>25155-30-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components</th>
<th>Density</th>
<th>Melting Point</th>
<th>Solubility (in H2O)</th>
<th>Odor</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>11.35</td>
<td>327.4°C</td>
<td>None</td>
<td>None</td>
<td>Silver-Gray Metal</td>
</tr>
<tr>
<td>Lead Sulfate</td>
<td>6.25</td>
<td>1170°C</td>
<td>40 mg/l (15°C)</td>
<td>None</td>
<td>White Powder</td>
</tr>
<tr>
<td>Lead Dioxide</td>
<td>9.4</td>
<td>290°C</td>
<td>None</td>
<td>None</td>
<td>Brown Powder</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>About 1.31(25°C)</td>
<td>About 114°C (Boiling)</td>
<td>100%</td>
<td>Acidic</td>
<td>Clear Colorless Liquid</td>
</tr>
<tr>
<td>Fiberglass Separator</td>
<td>N/A</td>
<td>N/A</td>
<td>Slight</td>
<td>Toxic</td>
<td>White Fibrous Glass Membrane</td>
</tr>
<tr>
<td>Container (ABS or PP)</td>
<td>N/A</td>
<td>N/A</td>
<td>NONE</td>
<td>No Odor</td>
<td>Solid Plastics</td>
</tr>
</tbody>
</table>

SECTION 3 -- HAZARD IDENTIFICATION

1. Acute Hazards

Do not open battery. Avoid contact with internal components. Internal components include lead and liquid electrolyte.
Electrolyte - Electrolyte is corrosive and contact may cause skin irritation and chemical burns. Electrolyte causes severe irritation and burns of eyes, nose and throat. Inhalation can cause severe burns and vomiting. Lead - Direct skin or eye contact may cause local irritation. Inhalation or ingestion of lead dust or fumes may result in headache, nausea, vomiting, abdominal spasms, fatigue, sleep disturbances, weight loss, anemia and leg, arm and joint pain.

2. Sub-chronic and Chronic Health Effects

Electrolyte - Repeated contact with sulfuric acid battery electrolyte fluid may cause drying of the skin which may result in irritation, dermatitis, and skin burns. Repeated exposure to sulfuric acid mist may cause erosion of teeth, chronic eye irritation and/or chronic inflammation of the nose, throat and lungs. Lead - Prolonged exposure may cause central nervous system damage, gastrointestinal disturbances, anemia, and wrist-drop and kidney dysfunction. Pregnant women should be protected from excessive exposure to prevent lead from crossing the placental barrier and causing infant neurological disorders.

California Proposition 65 Warning: Battery posts, terminals, and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and reproductive harm, and during charging, strong inorganic acid mists containing sulfuric acid are evolved, a chemical known to the State of California to cause cancer. Wash hands after handling.
SECTION 4 -- FIRST AID MEASURES

<table>
<thead>
<tr>
<th>Emergency and First Aid Procedures</th>
<th>Contact with internal components if battery is opened, broken or spilled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inhalation</td>
<td>Remove to fresh air and provide medical oxygen/CPR if needed. Obtain medical attention.</td>
</tr>
<tr>
<td>2. Eyes</td>
<td>Immediately flush with water for at least 15 minutes, hold eyelids open. Obtain medical attention.</td>
</tr>
<tr>
<td>3. Skin</td>
<td>Flush contacted area with large amounts of water for at least 15 minutes. Remove contaminated clothing and obtain medical attention if necessary.</td>
</tr>
<tr>
<td>4. Ingestion</td>
<td>Do not induce vomiting. If conscious drink large amounts of water/milk. Obtain medical attention. Never give anything by mouth to an unconscious person.</td>
</tr>
</tbody>
</table>

SECTION 5 - FIREFIGHTING MEASURES

<table>
<thead>
<tr>
<th>Flash Point</th>
<th>Flammable Limits in Air % by Volume (When charging)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Hydrogen (H₂) Lower 4.1% Upper 74.2%</td>
</tr>
</tbody>
</table>

Special Fire Fighting Procedures: Lead-acid batteries do not burn or burn with difficulty. Do not use water on fires where molten metal is present. Extinguish fire with agent suitable for surrounding combustible materials. Cool exterior of battery if exposed to fire to prevent rupture. The acid mist and vapors generated by heat or fire are corrosive. Use NIOSH approved self-contained breathing apparatus (SCBA) and full protective equipment operated in positive-pressure mode.

Unusual Fire and Explosion Hazards: Hydrogen gas and sulfuric acid vapors are generated upon overcharge and polypropylene case failure. Ventilate charging areas as per ACGIH Industrial Ventilation: A Manual of Recommended Practice and National Fire Code, 1980 Vol. 1, P. 12, B-9, 10. Hydrogen gas may be flammable or explosive when mixed with air, oxygen, chlorine. Avoid open flames/sparks/other sources of ignition near battery. To avoid risk of fire or explosion, keep sparks or other sources of ignition away from batteries and do not allow metallic materials to simultaneously contact negative and positive terminals of cells and batteries. **SULFURIC ACID REACTS VIOLENTLY WITH WATER/ORGANICS.**

SECTION 6 -- ACCIDENTAL RELEASE MEASURES

Procedures for Cleanup: Stop release, if possible. Avoid contact with any spilled material. Contain spill, isolate hazard area, and deny entry. Limit site access to emergency responders. Neutralize with sodium bicarbonate, soda ash, lime or other neutralizing agent. Place battery in suitable container for disposal. Dispose of contaminated material in accordance with applicable local, state and federal regulations. Sodium bicarbonate, soda ash, sand, lime or other neutralizing agent should be kept on-site for spill remediation.

Personal Precautions: Acid resistant aprons, boots and protective clothing. ANSI approved safety glasses with side shields/face shield recommended. Ventilate enclosed areas.

Environmental Precautions: Lead and its compounds and sulfuric acid can pose a severe threat to the environment. Contamination of water, soil, and air should be prevented.

SECTION 7 -- HANDLING AND STORAGE

Precautions to be Taken in Handling and Storage: Keep away from flames during and immediately after charging. Combustion or overcharging may create or liberate toxic and hazardous gases and liquids including hydrogen, sulfuric acid mist, sulfur dioxide, sulfur trioxide, stibine, arsine and sulfuric acid. Store batteries in cool, dry, well ventilated area. Do not short circuit battery terminals, or remove vent caps during storage or recharging. Protect battery from physical damage.

Other Precautions: GOOD PERSONAL HYGIENE AND WORK PRACTICES ARE MANDATORY. Refrain from eating, drinking or smoking in work areas. Thoroughly wash hands, face, neck, and arms before eating, drinking or smoking. Launder soiled clothing before reuse. Emptied batteries contain hazardous sulfuric acid residue.
SECTION 8 -- EXPOSURE CONTROLS AND PERSONAL PROTECTION

Respiratory Protection (Specify Type) | Acid/gas NIOSH approved respirator is required when the PEL is exceeded or employee experiences respiratory irritation. When exposure levels are unknown or when firefighting, wear a self-contained breathing apparatus with a full face piece operated in a positive pressure mode.

Ventilation | Must be provided when charging in an enclosed area. Change air every 15 min.

Local Exhaust | When PEL is exceeded.

Mechanical (General) | Normal mechanical ventilation recommended for stationary applications.

Protective Gloves | Wear rubber or plastic acid resistant gloves with elbow length gauntlet when filling batteries.

Eye Protection | ANSI approved safety glasses with side shields/face shield recommended.

Other Protective Clothing or Equipment | Ventilation as described in the Industrial Ventilation Manual produced by the American Conference of Governmental Industrial Hygienists, shall be provided in areas where exposures are above the PEL or TLV specified by OSHA or other local, state and federal regulations. Acid-resistant rubber or plastic apron, boots and protective clothing. Safety shower and eyewash.

SECTION 9 -- PHYSICAL AND CHEMICAL PROPERTIES

Boiling Point | Electrolyte Approx. 235°F

Vapor Pressure | Electrolyte 1 mm Hg @ 145.8°F

Vapor Density | Hydrogen (Air = 1) : 0.069

Specific Gravity | Electrolyte (H₂O = 1) : 3.4

At STP | Evaporation Rate Not Applicable

Percent Volatile by Volume (%) | Not Applicable

Reactivity in Water | Electrolyte: 100% Soluble

Appearance and Odor | Battery: Polypropylene or hard rubber case, solid. Lead: Gray, metallic, solid

Electrolyte: Liquid, colorless, oily fluid; nuisance odor when hot or charging battery.

SECTION 10 -- STABILITY AND REACTIVITY

Stability | Unstable ☐ Stable ☒

Conditions to Avoid | High temperatures - cases decompose at <320°F. Avoid overcharging and smoking, or sparks near battery surface and rapid overcharge.

Incompatibility (Materials to Avoid) | Sparks, Open flames, Keep battery case away from strong oxidizers.

Hazardous Decomposition Products | An explosive hydrogen/oxygen mixture within the battery may occur during charging. Combustion can produce carbon dioxide (CO₂) and carbon monoxide (CO). Molten metals produce fumes and/or vapor that may be toxic or respiratory irritants.

Hazardous Polymerization | May Occur ☐ Will Not Occur ☒ Do not overcharge.

SECTION 11 -- TOXICOLOGICAL INFORMATION

GENERAL: The primary routes of exposure to lead are ingestion or inhalation of dust and fumes.

ACUTE: INGESTION/INHALATION: Exposure to lead and its compounds may cause headache, nausea, vomiting, abdominal spasms, fatigue, sleep disturbances, weight loss, anemia, and pain in the legs, arms and joints. Kidney damage, as well as anemia, can occur from acute exposure.

CHRONIC: INHALATION/INGESTION: Prolonged exposure to lead and its compounds may produce many of the symptoms of short-term exposure and may also cause central nervous system damage, gastrointestinal disturbances, anemia, and wrist drop. Symptoms of central nervous system damage include fatigue, headaches, tremors, hypertension, hallucinations, convulsions and delirium. Kidney dysfunction and possible injury has also been associated with chronic lead poisoning. Chronic over-exposure to lead has been implicated as a causative agent for the impairment of male and female reproductive capacity, but there is, at present, no substantiation of the implication. Pregnant women should be protected from excessive exposure. Lead can cross the placental barrier and unborn children may suffer neurological damage or developmental problems due to excessive lead exposure in pregnant women.
SECTION 12 -- ECOLOGICAL INFORMATION
In most surface water and groundwater, lead forms compounds with anions such as hydroxides, carbonates, sulfates, and phosphates and precipitates out of the water column. Lead may occur as sorbed ions or surface coatings on sediment mineral particles or may be carried in colloidal particles in surface water. Most lead is strongly retained in soil, resulting in little mobility. Lead may be immobilized by ion exchange with hydrous oxides or clays or by chelation with humic or fulvic acids in the soil. Lead (when in the dissolved phase) is bio-accumulated by plants and animals, both aquatic and terrestrial.

SECTION 13 -- DISPOSAL CONSIDERATIONS

| Waste Disposal Methods | Lead-acid batteries are completely recyclable. Return whole scrap batteries to distributor, manufacturer or lead smelter for recycling. For neutralized spills, place residue in acid-resistant containers with sorbent material, sand or earth and dispose of in accordance with local, state and federal regulations for acid and lead compounds. Contact local and/or state environmental officials regarding disposal information. |

SECTION 14 -- TRANSPORT INFORMATION

U.S. DOT PROPER SHIPPING NAME: UN2794, Batteries, wet, filled with acid, electric storage
U.S. DOT HAZARD CLASS: 8
U.S. DOT ID NUMBER: UN 2794
U.S. DOT PACKING GROUP: III
U.S. DOT LABEL: Corrosive

IMO PROPER SHIPPING NAME: UN2794, Batteries, wet, filled with acid
IMO U.N. CLASS: 8
IMO U.N. NUMBER: UN 2794
IMO PACKING GROUP: III
IMO LABEL: Corrosive
IMO VESSEL STOWAGE: A

IATA PROPER SHIPPING NAME: UN2794, Batteries, wet, filled with acid
IATA U.N. CLASS: 8
IATA U.N. NUMBER: UN 2794
IATA PACKING GROUP: III
IATA LABEL: Corrosive

SECTION 15 -- REGULATORY INFORMATION

U.S. Hazardous Under Hazard Communication Standard:
- Lead - YES
- Sulfuric Acid - YES
- Antimony - YES
- Arsenic - YES

Ingredients Listed on TSCA Inventory:
- YES

CERCLA Section 304 Hazardous Substances:
- Lead - YES
- Sulfuric Acid - YES
- Antimony - YES
- Arsenic - YES

*Reporting not required when diameter of the pieces of solid metal released is equal to or exceeds 100 micrometers.

EPCRA Section 302 Extremely Hazardous Substance:
- Sulfuric acid - YES

EPCRA Section 313 Toxic Release Inventory:
- Lead - CAS NO: 7439-92-1
- Sulfuric Acid - CAS NO: 7664-93-9
- Antimony - CAS NO: 7440-36-0
- Arsenic - CAS NO: 7440-38-2
SECTION 16 -- OTHER INFORMATION

THE INFORMATION ABOVE IS BELIEVED TO BE ACCURATE AND REPRESENTS THE BEST INFORMATION CURRENTLY AVAILABLE TO US. HOWEVER, BATTERY COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO SUCH INFORMATION, AND WE ASSUME NO LIABILITY RESULTING FROM ITS USE. USERS SHOULD MAKE THEIR OWN INVESTIGATIONS TO DETERMINE THE SUITABILITY OF THE INFORMATION FOR THEIR PARTICULAR PURPOSES. ALTHOUGH REASONABLE PRECAUTIONS HAVE BEEN TAKEN IN THE PREPARATION OF THE DATA CONTAINED HEREIN, IT IS OFFERED SOLELY FOR YOUR INFORMATION, CONSIDERATION AND INVESTIGATION. THIS MATERIAL SAFETY DATA SHEET PROVIDES GUIDELINES FOR THE SAFE HANDLING AND USE OF THIS PRODUCT; IT DOES NOT AND CANNOT ADVISE ON ALL POSSIBLE SITUATIONS, THEREFORE, YOUR SPECIFIC USE OF THIS PRODUCT SHOULD BE EVALUATED TO DETERMINE IF ADDITIONAL PRECAUTIONS ARE REQUIRED.

Form MSDS Rev. January 18, 2014

END